
MATH 579: Combinatorics
Exam 6 Solutions

The first two questions concern the cube graph Q3:
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1. Determine, with adequate justification, whether or not Q3 is Eulerian and/or Hamiltonian.

For a connected graph to be Eulerian, by our theorem (proved in the HW), each vertex would
have to have even degree. In Q3, all eight vertices have odd degree. Hence it is not Eulerian.
Q3 is Hamiltonian, as proved by the following Hamiltonian cycle: 1−2−3−4−8−7−6−5−1

2. Determine, with proof, whether or not Q3 is bipartite.

Q3 is bipartite. One way to partition the vertices is: R = {1, 3, 6, 8} and B = {2, 4, 5, 7}.
We see that each face of the cube has red vertices on two opposite corners, and blue on the
other two corners. Hence, each edge is between a red vertex and a blue vertex.

3. Let G be a connected (finite, simple) graph. Prove that G is a tree if and only if removing
any edge of G leaves G disconnected.

First direction: Suppose that G is a tree, and e = {u, v} is an arbitrary edge of G. Let G′

be G, with edge e removed. If u, v had some path u− e1 − · · · − ek − v between them in G′,
then u− e1 − · · · − ek − v − e− u would be a cycle in G. Since G is a tree, it has no cycles,
so there is no such path, and hence G′ is disconnected.

Second direction: Suppose that removing any edge of G leaves it disconnected. Arguing by
contradiction, suppose that G has a cycle u − e1 − v − e2 − · · · − ek︸ ︷︷ ︸

path1

−u. We now remove

edge e1, leaving graph G′, which must be disconnected by hypothesis. Hence, there must
be some vertices a, b which were connected by a path in G, but are no longer so connected
in G′. Since the only difference is e1, that edge must have been in the path connecting
them in G, i.e. a− · · · − v︸ ︷︷ ︸

path2

−e1 − u− · · · − b︸ ︷︷ ︸
path3

(possibly with u, v reversed). But we have

a− · · · − v︸ ︷︷ ︸
path2

− e2 − · · · − ek︸ ︷︷ ︸
path1

−u− · · · − b︸ ︷︷ ︸
path3

, a path connecting a, b in G′, a contradiction.

4. Let G be a graph. Prove that G is bipartite if and only if it contains no odd cycle.

First direction: Suppose that G is bipartite. Any cycle in a bipartite graph must alternate
vertices between the two parts, hence must have an even number of vertices, hence must be
an even cycle.

Second direction: Suppose that G contains no odd cycle; we will prove that G is bipartite.
Induction on n = |V |. If n = 1, then the graph is bipartite. Suppose now that every graph
of size up to n with no odd cycle must be bipartite, and we have a graph G of size n + 1
with no odd cycle. Choose any vertex v of G, and set G′ to be the subgraph of G that
removes vertex v and all its incident edges. G′ must have no odd cycle (since that would be



an odd cycle in G), so by the inductive hypothesis G′ must be bipartite. Consider all of the
vertices of G′ that are adjacent to v in G; call this set N . If two of those vertices r, s ∈ N
are connected in G′ but in opposite parts, then the path between them in G′ must alternate
parts and hence be of odd length. Hence, by adding the edges {r, v} and {r, s}, we get an
odd cycle in G, a contradiction. If instead two vertices r, s ∈ N are of opposite parts but are
not connected, then we may swap the parts of all the vertices in the connected component
of s. By repeating this step as needed, we may ensure that all the vertices of N are in the
same part. Now, we put v in the other part.

5. Let G be a graph. Prove that it is connected if and only if it has a spanning tree.

First direction: Suppose that G has a spanning tree T . T is connected (being a tree), and
includes all the vertices of G. Hence, each pair of vertices of G is connected by a path in T ,
so G is connected.

Second direction: Suppose that G is connected. Proof by induction on n = |V |. If n = 1,
then the sole vertex is a spanning tree. Suppose now that all connected graphs of size up
to n have a spanning tree, and that G has size n + 1. Choose any vertex v of G, and
set G′ to be the subgraph of G that removes vertex v and all its incident edges. Now, G′

might no longer be connected, but it does have connected components G′
1, G

′
2, . . . , G

′
k, each

of which has size no more than n. Further, each component must have at least one edge
connecting to v (else removing v would not separate it). Hence, by the inductive hypothesis
repeatedly, there are spanning trees T1 for G′

1, T2 for G′
2, . . . , Tk for G′

k. Set T to be the
union of T1, T2, . . . Tk, together with v, and edges e1, e2, . . . , ek (one to each G′

i component).
T contains all vertices of G, so we prove T is a tree. If T has a cycle without v, that would
mean that some Ti has this cycle, a contradiction. Hence, T has a cycle with v, which we
may write as v − ei − u − · · · − w − ej − v. If i 6= j, then the path somehow gets from
component G′

i to G′
j without passing through v, which is impossible. If instead i = j, then

u = w and Ti has a cycle (from u to w = u), also impossible since Ti is a tree. Hence T has
no cycle and is a tree.

6. Let G be a graph with n vertices and m edges. Prove that G has at least m− n + 1 cycles.

Let n be fixed. We proceed by induction on m. Base case: m = n − 1 (or less). Then,
m− n + 1 ≤ 0, so the conclusion holds trivially.

Assume now that m ≥ n, and that every graph (with n vertices) and with at most m edges
has at least m − n + 1 cycles. Let G be a graph (with n vertices) and m + 1 edges. Since
m + 1 > n, G cannot be a tree (by our theorem that a tree on n vertices has n− 1 edges),
and therefore G has a cycle C. Let e be any edge from that cycle C. Let G′ be the subgraph
of G that removes edge e. G′ has m edges, hence by the inductive hypothesis has at least
m − n + 1 cycles. However, G′ does not have cycle C, since it doesn’t contain edge e.
Hence, G has all the m − n + 1 cycles that G′ has, and also cycle C, for a total of at least
(m− n + 1) + 1 = (m + 1)− n + 1 cycles.

Note that the induction stops when m =
(
n
2

)
, since at that point we have a complete graph

and cannot add any more edges. This doesn’t cause any problems for our proof.


